Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Molecules ; 28(6)2023 Mar 13.
Article in English | MEDLINE | ID: covidwho-2264296

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus has been causing the COVID-19 pandemic since December 2019, with over 600 million infected persons worldwide and over six million deaths. We investigated the anti-viral effects of polyphenolic green tea ingredients and the synthetic resveratrol analogue 3,3',4,4',5,5'-hexahydroxy-trans-stilbene (HHS), a compound with antioxidant, antitumor and anti-HIV properties. In the TCID50 assay, four out of nine green tea constituents showed minor to modest cell protective effects, whereas HHS demonstrated the highest reduction (1103-fold) of the TCID50, indicating pronounced inhibition of virus replication. HHS was also a highly effective inhibitor of SARS-CoV-2 proliferation in VeroE6 cells with an IC50 value of 31.1 µM. HSS also inhibited the binding of the receptor-binding domain (RBD) of the spike protein to the human angiotensin-converting enzyme 2 (ACE2) receptor (RBD-ACE2) binding with 29% at 100 µM and with 9.2% at 50 µM indicating that the SARS-CoV-2 inhibitory effect might at least in part be attributed to the inhibition of virus binding to ACE2. Based on the chemical similarity to other polyphenols, the oral bioavailability of HHS is likely also very low, resulting in blood levels far below the inhibitory concentration of EGCG against SARS-CoV-2 observed in vitro. However, administration of HHS topically as a nose or throat spray would increase concentrations several-fold above the minimal inhibitory concentration (MIC) in the mucosa and might reduce virus load when administered soon after infection. Due to these promising tissue culture results, further preclinical and clinical studies are warranted to develop HHS as an additional treatment option for SARS-CoV-2 infection to complement vaccines, which is and will be the main pillar to combat the COVID-19 pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2/metabolism , Resveratrol/pharmacology , Pandemics , Protein Binding
2.
Frontiers in psychology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1980784

ABSTRACT

The SARS-CoV-2 pandemic has highlighted the interdependency of healthcare systems and research organizations on manufacturers and suppliers of personnel protective equipment (PPE) and the need for well-trained personnel who can react quickly to changing working conditions. Reports on challenges faced by research laboratory workers (RLWs) are rare in contrast to the lived experience of hospital health care workers. We report on experiences gained by RLWs (e.g., molecular scientists, pathologists, autopsy assistants) who significantly contributed to combating the pandemic under particularly challenging conditions due to increased workload, sickness and interrupted PPE supply chains. RLWs perform a broad spectrum of work with SARS-CoV-2 such as autopsies, establishment of virus cultures and infection models, development and verification of diagnostics, performance of virus inactivation assays to investigate various antiviral agents including vaccines and evaluation of decontamination technologies in high containment biological laboratories (HCBL). Performance of autopsies and laboratory work increased substantially during the pandemic and thus led to highly demanding working conditions with working shifts of more than eight hours working in PPE that stressed individual limits and also the ergonomic and safety limits of PPE. We provide detailed insights into the challenges of the stressful daily laboratory routine since the pandemic began, lessons learned, and suggest solutions for better safety based on a case study of a newly established HCBL (i.e., BSL-3 laboratory) designed for autopsies and research laboratory work. Reduced personal risk, increased resilience, and stress resistance can be achieved by improved PPE components, better training, redundant safety measures, inculcating a culture of safety, and excellent teamwork

3.
Phytomedicine ; 98: 153970, 2022 Jan 30.
Article in English | MEDLINE | ID: covidwho-1655019

ABSTRACT

BACKGROUND: The COVID-19 pandemic will continue to threaten our health care systems in the next years. In addition to vaccination there is a need for effective tools for prevention and treatment. Products from natural sources, like standardized plant extracts offer a wide range of antiviral effects and possible applications. PURPOSE: The aim of this study was to investigate, whether a sorbitol/lecithin-based throat spray containing concentrated green tea extract (sGTE) interacts with SARS-CoV-2 viral particles and additionally is capable to block the virus replication. STUDY DESIGN AND METHODS: The antiviral effect was studied in a VeroE6 cell culture model, including concentration/effect correlations and the biological mechanism of virus blockade, using the Wuhan type of SARS CoV-2 as well as its beta- and delta-mutations. In addition, the qualitative and quantitative tannin profile present on the oral mucosa after spray application has been investigated by LC-MS/MS and HPLC-DAD analyses of (-)-epigallocatechin-3-O-gallate (EGCG) and related catechin derivatives. RESULTS: The findings of this study demonstrate, that sGTE has strong neutralizing activity on SARS-CoV-2 resulting in an up to 6,3E+04-fold reduction of infectivity independent from the strain. The type of interaction of sGTE with surface proteins seems to be direct and non-specific concerning the viral surface protein structures and resembles the general non-specific activity of polyphenols. By HPLC-DAD analysis, eight catechins were identified in sGTE, with EGCG and (-)-epicatechin-3-O-gallate as the most abundant ones. The total content of catechin derivatives, calculated as catechin, was 76 g/100 g. LC-MS/MS and HPLC-DAD analyses of throat swabs after application of a sGTE spray have shown that the concentrations of green tea tannins in the pharyngeal mucosa are higher than the effective dose found in the in vitro studies with SARS-CoV-2, even 1 h after the last application. CONCLUSION: The findings of this study suggest that sGTE has strong neutralizing activity on SARS-CoV-2 independent from the strain (Wuhan strain, beta- or delta-variants). sGTE might be relevant for reduction of corresponding viral infections when periodically applied to mouth and throat.

SELECTION OF CITATIONS
SEARCH DETAIL